Hitachi Rail STS’s research into energy efficiency concentrates on the following macro-areas:

  • Assistance with the design of turnkey systems”, through holistic hardware-in-the-loop simulators to provide a transport system that uses energy efficiently.
  • “Operation – rail & driverless”, focused on searching for the optimum speed profile, considering scheduling and driving conduct.
  • “Technologies for energy savings”, for ground recovery systems, geothermal heat pumps, simulators for the optimal size of supercapacitor accumulation systems.

The company develops these areas as part of the MERLIN (Management of Energy in Railway Systems), OSIRIS (Optimal Strategy to Innovate and Reduce energy consumption In urban rail Systems) and SFERE (Sistemi FERroviari: ecosostenibilità e Risparmio Energetico) research projects.

Two important innovations introduced by Hitachi Rail STS in signaling systems for train control relate to the use of public telecommunications networks and GPS - Global Positioning Satellite - technology. The use of these new control systems will replace track equipment, which requires greater energy consumption. These systems will especially be used on low traffic lines in Europe, which make up about 50% of the total network length.

The company is currently standardizing the new COTS (Commercial Off The Shelf) hardware platforms based on CPU with Atom (single or dual core) technology, which allow a reduction in consumption from about 250 W to about 30 W for each processing unit, nearly 90%. For example, as there are more than 250 CPU on the northbound line, the estimated energy saving is approximately 1,320 KW a day.

Hitachi Rail STS’s measures to improve the sustainability of its products and solutions

Click on red circle to discover more

Fixed Block and Moving Block principles are provided. Moving Block allows better line exploitation and reduces the need of wayside signaling device installation.


TMS provides Traffic Control & Regulation and data needed to perform real time train regulation in order to manage train regulation. Moreover provides the strategy to ATO in order to allow power consumption reduction and save energy.


Track Circuit

Moving Block and On Board ATC high Grade of Automation (GoA) allow reducing devices along the line (Signal, Track Circuits, Axle Counters). Less components, less maintenance and environmental impact.



Balises deployment is avoided thanks to satellite Location Determination System (LDS). Less devices, less cost, less maintenance and environmental impact.


LDS on board provides Virtual Balises to ATP. ATP provides safe train control. ATO provides automatic driving according to time table constraints. Moreover it performs driving algorithms and strategies in order to reduce power consumption.


Reducing raw materials consumption

The use of powerful technological platforms integrating several functions in the same subsystem enables Hitachi Rail STS to reduce the size of equipment and their connectors, using simple and effective systems for scheduling, testing and roll-out. In addition, the search for increasingly standardized designs encourages innovation and a reduced use of components.

Specifically, over the past few years, methods to compact hardware of the central and outlying units of the railway control systems produced by Hitachi Rail STS were introduced and refined. They are based on both mechanical and technological solutions and allow a reduction in volumes, size, heat dissipation and waste to be eliminated of roughly 35%-40%.


Partly in response to certain new contracts (e.g., the Montreal MPM-10 train control system project), Hitachi Rail STS is paying greater attention to studying ecodesign aspects, including to meet customers’ environmental standards, such as:

  • Analysis of compliance with REACH – Registration, Evaluation and Authorization of Chemicals regulation (an integrated registration, evaluation, authorization and restriction system for chemicals established in the EU);
  • Analysis of the re-usability and recyclability of materials;
  • Life Cycle Assessment (LCA)13.

The methodological approach entails a comparison of processes, materials and products in order to evaluate whether choices are ecologically compatible. The design stage, along with an analysis of costs and quality level, makes it possible to identify critical points in the life cycle. The analysis process is carried out using software and considering the applicable legislative requirements and UNI ISO 14040 standards14.

There is also more focus on the choice of materials, increasingly based on their ecological compatibility, starting from the product’s design stage (e.g., resins and paints of tropicalized circuit boards).

New approaches to hardware testing make the simultaneous testing of thousands of units possible, whereas previously tests were performed on one “box”, or controller, at a time. This solution, called WSP Sim, has already been used for the Pisa system (northbound line).

The environmental management requirement for some ongoing contracts (e.g., the Copenhagen Cityringen) is to define an environmental policy to be applied during all the system implementation stages and requires preparation of an environmental impact plan, an environmental action plan, etc.. In particular, with respect to ecodesign, environmental impact considerations must be included in the project flow in line with the environmental policy.

13. Life Cycle Assessment (“LCA”) is a methodology that evaluates a series of interactions that a product or service has with the environment, considering its entire life cycle, which includes pre-production (including the extraction and production of materials), production, distribution, use (including re-use and maintenance), recycling and final disposal. The LCA procedure is standardized at international level by ISO 14040 and 14044 (International Organization for Standardization).

14. The regulation describes the principles and reference framework to assess the lifecycle.

LED technology

For the last few years, Ansaldo STS has produced LED-based traffic lights at the Tito Scalo and Batesburg sites. This innovation has a positive impact on energy consumption, the management of maintenance and the disposal of maintenance material. Suffice it to say that bulbs were normally changed every four months, while LED bulbs last at least ten years.

Specifically, the following products have been developed, produced and are already installed (such as the Turin-Padua line) in Italy alone:

  • SALACC LED (signaling for electronic central management systems)
  • Blue LED Signal for electronic central management systems
  • Blue LED Signal for ACEI systems
  • Shunting Signal LED for electronic central management systems
  • Shunting Signal LED for ACEI (currently being endorsed with RFI).

Reliable and efficient hourly traffic

The tools that Hitachi Rail STS has designed and produced enable operators to create more efficient timetables for trains running on railway infrastructures, establishing, in particular, which places are the best for stops, junctions and passing, and determining travel times to minimize waits and consumption.

Therefore, these tools make it possible to prevent and supply pro-active measures to combat traffic caused by train delays, scheduled and non-scheduled maintenance, natural disasters and personnel shifts. This support technology is also used to significantly cut down on fuel by increasing the average speed of trains, concurrently reducing the waste of fuel for acceleration closely followed by braking due to temporary slowdowns or stop signals.